Financing the decarbonisation of regions & cities with geothermal

Business models to finance geothermal projects

Dr. Miklos ANTONIS
GPC IP/GEOFLUID
EGEC President
m.antics@geoproduction.fr
www.gpc-france.com
www.geofluid.fr
www.egec.org
OUTLINE

• Geothermal district heating potential in Europe
• Geothermal energy system synergies
• Geothermal Financial Characteristics
• Key business factors: Derisking
• Business model building blocks
• Financial system and streams
• Regulatory framework
• Example of a typical GeoDH operation in the Paris Basin
Geothermal General Characteristics

- Well suited to base-load: capacity factors >95%, but can also accommodate variable loads
- Energy prices are site specific and there is limited capacity for export
- Economics strongly dependent on resource quality
- In some cases (when a high quality resource is available), geothermal can directly compete on price with other energy sources without incentives or subsidies
Geothermal Financial Characteristics

• High CAPEX and low OPEX compared to many sources except e.g. hydro
• Drilling may be up to 50% of total project cost
• Exploration and delineation drilling comprise significant
 resource risk:
 • At the exploration stage that the whole project may not be feasible as planned
• Requires substantial investment in drilling before commercial financial closure is possible
 • Exploration cost independent of project size
• Requires at least 5 -8 years investment before any revenue
Geothermal Financial Characteristics: The Fundamental Problem

• The **risk** (and therefore upfront cost profile) of geothermal projects resembles oil and gas projects
 • But a barrel of hot water is worth $0.50, not $45 ($70 before COVID19)!
• The **returns** on a geothermal project resemble utility projects
 • And both utility companies and banks are risk averse
• Perversely, rising oil prices *increase* the up-front cost of geothermal projects because of competition for human resources, drilling rigs and materials
 • In recent years drilling costs have increased relative to general inflation
Key Business Factors: De-risking to Accelerate Development

• At the exploration stage:
 • Good quality geoscientific data
 • Very helpful for government agencies to carry this work out and make it accessible
 • E.g. Eastern Europe (before 1990), Turkey
 • Government agencies doing exploration drilling
 • E.g. Eastern Europe (before 1990), Turkey
 • But this raises issues of later transfer of wells and environmental liability for unsuccessful wells
Typical financial system and streams. Private taxable operating company

- **FINANCING**
 - EQUITY FUNDING
 - SHAREHOLDERS
 - BANK LOANS CREDIT LINES
 - FUND RAISING

- **INVESTMENTS**
 - SELF FINANCING

- **HEAT PRODUCTION SALES CASH FLOWS**
 - ROYALTIES
 - DEBT REPAYMENTS
 - DIVIDENDS
 - OM COSTS

- TAXES

EGEC GEO THERMAL
From resource to end users. A typical geothermal district heating regulatory framework.
PARIS BASIN GDH SCHEME

1. Production well
2. Submersible production pump
3. Injection pump
4. Injection well
5. Geothermal heat exchanger
6. Back-up (peak-load)/relief boiler
7. Heating grid
8. Substation
9. Geothermal reservoir (Dogger limestones)
10. Cooled fluid zone
TYPICAL COST BREAKDOWN (10^3€) FOR A GEOTHERMAL DOUBLET

CAPEX

<table>
<thead>
<tr>
<th>Mining</th>
<th>min</th>
<th>max</th>
<th>Mining</th>
<th>min</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Well drilling/completion</td>
<td>8500</td>
<td>9000</td>
<td>P1 Power, chemicals, consummables</td>
<td>200</td>
<td>250</td>
</tr>
<tr>
<td>Primary (geothermal) loop</td>
<td>1200</td>
<td>1300</td>
<td>P2 Monitoring, light maintenance</td>
<td>75</td>
<td>90</td>
</tr>
<tr>
<td>Geothermal heat exchanger</td>
<td>300</td>
<td>400</td>
<td>Heavy duty maintenance, well workover, on duty call</td>
<td>250</td>
<td>300</td>
</tr>
<tr>
<td>Total</td>
<td>10000</td>
<td>10700</td>
<td>Miscellaneous</td>
<td>30</td>
<td>50</td>
</tr>
</tbody>
</table>

Surface

<table>
<thead>
<tr>
<th>Surface</th>
<th>min</th>
<th>max</th>
<th>Surface</th>
<th>min</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secondary (grid) loop</td>
<td>600</td>
<td>700</td>
<td>P1 Power, chemicals</td>
<td>40</td>
<td>50</td>
</tr>
<tr>
<td>Heat plant</td>
<td>800</td>
<td>900</td>
<td>P2 Heat plant/grid monitoring/maintenance</td>
<td>400</td>
<td>450</td>
</tr>
<tr>
<td>Grid (piping)</td>
<td>8000</td>
<td>10000</td>
<td>P3 Provisions for depreciation</td>
<td>250</td>
<td>350</td>
</tr>
<tr>
<td>Grid (substations)</td>
<td>2500</td>
<td>3000</td>
<td>Miscellaneous</td>
<td>40</td>
<td>60</td>
</tr>
<tr>
<td>Total</td>
<td>11900</td>
<td>14600</td>
<td>Total</td>
<td>730</td>
<td>910</td>
</tr>
</tbody>
</table>

GRAND TOTAL 21900 25300

BREAKEVEN

<table>
<thead>
<tr>
<th>BREAKEVEN (€/MWh)</th>
<th>WORST CASE</th>
<th>BEST CASE</th>
<th>MEDIUM CASE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAPEX (10^3€)</td>
<td>25000</td>
<td>22000</td>
<td>23000</td>
</tr>
<tr>
<td>OPEX (10^3€/yr)</td>
<td>1600</td>
<td>1285</td>
<td>1400</td>
</tr>
<tr>
<td>SUBSIDY (% CAPEX)</td>
<td>0</td>
<td>35</td>
<td>25</td>
</tr>
<tr>
<td>BREAKEVEN</td>
<td>81</td>
<td>56</td>
<td>64</td>
</tr>
</tbody>
</table>
D4.2

BUSINESS MODELS ON GEOTHERMAL DH SYSTEMS

March 2014
Morten Holmeister & Anne Baastrop Holm
Green Energy Association

Co-funded by the Intelligent Energy Europe Programme of the European Union

The sole responsibility for the content of this publication etc. lies with the authors. It does not necessarily reflect the opinion of the European Union. Neither the EAC nor the European Commission are responsible for any use that may be made of the information contained therein.
Geothermal Energy: renewable-sustainable-proven-achievable-realistic

Thank you for your attention!